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The procedure for solving the Stefan problem by reducing it to a nonlinear integral equation of minimum 

dimensionality is described in brief. Examples of modeling the phase transitions are given when a half space 

and a metal layer are subjected to the thermal action of a stationary uniformly moving surface source of 

electric-arc origin. 

In practice, calculations in electrical engineering often include the problem of modeling the thermal action 

of electric-arc discharges on large conductors and shells. Analogous problems emerge in temperature calculations 

of materials heat-treated by lasers. 
An adequate formulation of such problems leads to the well-known Stefan problem [1 -4 ] ,  while in the 

literature, calculation procedures are usually used that disregard the latent heat of melting (crystallization) [5, 6 ]. 

Compared to ordinary boundary-value problems (BVP) for a parabola-law second-order equation (the heat 

conduction equation) the Stefan problem is distinguished by the so-called Stefan nonlinearity of the equation with 

a singilarity of the delta-function type. The first-order derivative of a solution of the Stefan problem is a 

discontinuous function. 
The enumerated circumstances cause additional difficulties in solving the Stefan problem by finite- 

difference and finite-element methods, which bring about certain requirements for smoothness of the equation and 
its solution [3, 4]. In the case of a multidimensional formulation of a BVP, the above methods need great 

expenditures of  the working memory. The method of boundary-value integral equations is free of some of these 

drawbacks, which explains the keen interest of researchers to reducing the Stefan problem an equivalent integral 

equation of minimum dimensionality [ 1 - 4 ]. 
The algorithm for reduction and the computational scheme for solving the Stefan problem by the method 

of integral equations for a nonstationary multidimensional case is described in detail in [1 ]. The present work is 

devoted to the practically important case of a stationary uniformly moving surface source. 

1. Thermal Action of a Surface Source upon a Bulky Electrode. We now consider the temperature condition 

for an electric arc whose reference spot moves uniformly and rectilinearily along the x coordinate so that the 

coordinate points fixing the arc to the electrode surface are of the form (x-vt ,  y, z = 0), where v is the arc velocity, 

and (x, y, z) are Cartesian coordinates. 
If we introduce local coordinates associated with the center of the reference spot, then the boundary-value 

problem may be formulated as [1 ]: 

- div (2 grad u) - pcv -~x = f + pay (u - ui), M ~ R 3 

0u 
~ t ~ = q s ,  z = 0 ;  2 ,  p ,  c ,  a ,  v = c o n s t ,  

where R ~ - = {(x, y z) [z < 0}. 
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The well-known procedure yields the following expression for the temperature distribution: 

0a (M,  N) ~ (u (N) - uS) dV N M �9 R a u (hi)  = g (hi)  - p a v  f ~x N , _ 
3 

R _  

Here H(M) is a function describing the temperature field in the absence of the latent heat of melting; G ( M ,  IV) is 

the Green function for a half-space: 

G ( M ,  N) = exp [ b ( x g - - x N ) ] { e x p ( - - b r M N ) / r g N  + exp(-br*MN)/rgN )/(4Z2) , 

rMN : ~/(XM -- XN) 2 + (YM -- YN) 2 + (ZM + ZN) 2 ' 

where b is a parameter equal to pcv/2~.  

If we employ the a priori unknown function z = zo(x,  y) describing, in Cartesian coordinates, the z 

coordinate of the phase-transition surface, then the integral representation of temperature u(x ,  y, z) acquires the 

form 

o 

u ( x ,  y ,  z ) =  H ( x ,  y,  z ) - p ~ v  f f oa 
2 zO(xN, YN) OXN 

R 

- - ( X - -  XN, y- -  YN' z - ZN) d V N . 

By virtue of the equality 

0 o 
f G ( x -  XN,  y - -  YN,  z - -  ZN) dz  N = 

OXN zO(xN,yg) 

o OG 
~" f ~ (X -- XN,  y - YN,  z -- ZN) dz  N - 

""N zOtXN,YN) 

Oz 0 
Ox N G ( x -  x N ,  y - -  yN ,  z -  z O(x  N ,  YN)) 

the three-dimensional integral in the last expression for u(x ,  y, z) is transformed into a two-dimensional one: 

u (x, y ,  z) --- H (x, y ,  z) - p a v  f G (x - XN,  
2 

R 

Oz 0 
Y - -  YN'  z - -  Z 0 (XN,  YN) )~X  N dXNdYN" 

u f =  H (x , y ,  z O (x  , y)) - p a v  f G (X -- XN,  y -- yN ,  Zo (X , y) -- z O ( x N ,  YN)) • 
2 

R 

Assuming z = z0(x, y), we obtain the sought nonlinear integral equation relative to z0(x, y): 

Oz 0 
• ~x  N (Ix N dYN, ( x ,  y) e R 2 . 

It is sound practice to solve this equation by the quadrature method, but preliminarily it is necessary to 
pass to spherical coordinates. 

2. Thermal Action of a Surface Source upon a Thin Metal Layer. The corresponding expression for the 
temperature distribution is as follows: 
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Fig. 1. Isotherms of layer melting under  different heating conditions. 

YO(XN) 
, , R z 

OG 
u ( x ,  y) = H ( x ,  y) - pav  dx u f Ox N (X -- XN, y -- YN) dYN (x y) E , 

- ~ _ Yo(XN) 

where yo(x) = ro(7") sin 7', 0 _ 7' < 2st; G(M, N) -- exp [b(x M - XN) ] Ko(brMN); Ko(x) is the McDonald function. 

Taking into account the equality 

0 Y~ 
f 

OXN -YO(XN ) 
G (x  - XN , y -- YN) dYN = [G (x - XN , y -- YO (XN)) + 

+ G (x - x ~ ,  
I 

Y + YO (XN)) ] YO (XN) q- 

YO(XN) 
f OG 

-Yo(XN) OXN (XM -- XN , YM -- YN) dYN,  

we obtain a representat ion of u(x, y) in terms of a one-dimensional integral: 

u(x, y) = H ( x ,  y) +pay ~ [ G ( x - x  N, y--Yo(XN)) + 
- - 0 0  

+ G ( x -  XN,  y Jr YO (XN)) ]yO (XN) dXN,  

whence the one-dimensional nonlinear integral equation for yo(x) or to(7") follows: 

p ro(O) 

uf = ~ K 0 (bro) exp (bx) + p a y  f 
-ro(~) 

[G (x - XN , YO (x) -- YO (XN)) + 

+ G ( x - x  N ,  Yo(X) +Yo(XN))  ]YO(XN) dXN, - - r  O(sr) < _ x < r  0 ( 0 ) ,  

where the expression for H(x,  y) corresponds to the case of a moving point source. 

For numerical integration, we transform the integral equation by the quadrature method using the formula 

p m - l  
uf = - ~  K o (brk) exp (bxk) + pay  

i=l 
[C (x/, - xj+ 1/2, Yk - YJ+ 1/2) + 
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+ G (x  k - X / + l / z ,  y~ + y / + t a )  ] (Y/+I - Yj) ,  k = 1 . . . . .  m ; 

X/+l /2  = (x] + x ] + l ) / 2 ,  Y]+1/2 = (Y] + Y ] + I ) / 2  , x] = r] cos ~o], 

y]=r]sin~o], 9 =rO(~~ ~o]=n(m-])/(m- 1 ) ,  j =  1 . . . .  , m .  

The unknown values of rl . . . .  , r m are calculated according to the iteration scheme of the implicit Seidel 

method: 

F k ( r  . . . .  , r k - 1  , rk  , 1 . . . . .  r = O ,  k = 1 . . . . .  m .  

The results of the solution are represented by a series of computer graphs. In Fig. 1, each isotherm is 

drawn on a relative scale in which the semimajor axis of the melting isotherm is assumed to be unity. With increase 

in the velocity of displacement of the arc reference spot, the isotherms become more elongated. An analogous effect 

occurs when the thickness of the metal sheet decreases or the arc power increases. 

Thus, the nature of the main dependences corresponds, qualitatively, to the well-known data in the theory 

of welding and electro-erosion processes. However, quantitatively, according to the present author's data, account 

for the latent heat of melting is necessary in many instances since it influences substantially the absolute geometric 

dimensions of the melting zone (for the majority of metals within 20-50  ~ ) .  
The method described is especially effective when realized with the aid of microprocessors and personal 

computers. 

N O T A T I O N  

x, abscissa; y, ordinate; z, third coordinate; t, time; v, velocity; u, absolute temperature; 2, thermal 

conductivity; p, mass density; c, heat capacity; a, latent heat of the phase transition; u h temperature of the phase 

transition; 71, Heaviside unit function; M, Point of the three-dimensional space; qs, density of the surface source; 

f, density of the bulk source; rm, N, distance between the points M and N; ~o, polar angle; P, arc power; h, thickness 

of the metal layer; m, number of nodes of the finite-difference scheme; n, number of the iteration. 
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